It is a good idea to take these to a proper waste disposal facility. Use water spray to keep fire-exposed containers cool. Zinc Sulfatereacts violently with PHOSPHORUS and FINELY DIVIDED ALUMINUM or MAGNESIUM. Zinc Sulfate is not compatible with STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE). Alkali metals are minimally toxic as their salts and may be dumped down the drain. Zinc Sulfateis a colorless, odorless, crystalline powder. It is used in making rayon, as a wood preservative, and as an analytical reagent. It is also used as a dietary supplement, and in herbicides, water treatment, fireproofing, deodorant, cosmetics and fertilizers. Reasons for Citation If the mixture of sodium zincate solution and zinc is cloudy, allow to cool, and then filter off the zinc to leave a clear filtrate. WebZINC sulfate heptahydrate | H14O11SZn | CID 62640 - structure, chemical names, physical and chemical properties, classification, patents, literature, biological activities, safety/hazards/toxicity information, supplier lists, and more. The information posted in this article is merely a collection of observations from various amateur chemists and is NOT meant for professionally disposing large amounts of chemicals and should NOT be used as a guideline on neutralizing reagents. EXALGO. Flammable organic solvents that are safe in low exposures, such as ethanol, methanol, and acetone can often simply be burned outside for disposal, as most often their combustion products are simply carbon dioxide and water. To dispose of these chemicals, place the containers in a box lined with a plastic bag, tape the top of (USCG, 1999). Before neutralizing them, always dilute the acid first, to limit splashing or boiling the acid. Water soluble. WebHazardous decomposition products:Zinc or zinc oxides. Mineral acids and bases should be neutralized to pH5.5 to 9 range before disposal, following approved procedures. Many compounds of chromium, especially chromium(VI), are poisonous and carcinogenic. It is used in the production of rayon, as a feed supplement, and as a fertilizer ingredient. Salts of hydrochloric, sulfuric, phosphoric acids can be further diluted then safely poured down the drain, or recycled if you want. NaOH, Decomposes to release nitrogen/chlorine oxides and oxygen, Aqueous base; percarbonates can also be used to remove nitric oxide; multiple washings may be required, Decomposes, giving off nitrogen oxide and chlorine/HCl fumes, Highly corrosive and toxic to all organisms and materials, Careful addition to crushed ice, followed by neutralization with a diluted base, Deadly and extremely corrosive to all organisms, Diluted and hydrolyzed; Careful and controlled pyrolysis, Any base, hydroxide, carbonate, bicarbonate; percarbonates can also be used, Decomposes, giving off nitrogen oxide fumes, Corrosive to organisms and rocks; salts somewhat toxic to animals, Gentle reduction with various reducing agents, Breaks down to nitrogen and oxygen at high temperatures, Low toxicity to wildlife, may induce light narcotic effects and laughing sensation in some organisms, Mixed with a more flammable solvent, followed by incineration, Safe, occurs naturally in citrus fruit peels, Pyrolysis; diluted and poured down the drain, Decomposes on heating to release carbon oxides and various organic compounds, May pose a threat to wildlife in large amounts, Reduced with hydrogen or another reducing agent, Neutralization with any oxide, hydroxide, carbonate, followed by pyrolysis, Releases carbon oxides and water vapor at high temperature, Toxic to wildlife; Small amounts occur in some plants, Disolving it in large amounts of water, followed by neutralization with any oxide, hydroxide, carbonate, Toxic and corrosive to wildlife and environment, Any compound easily oxidizable that does not ignite, such as carbon monoxide, activated charcoal, Accelerates the decomposition of ozone, but not enough, Dangerous to wildlife, may oxidize various gaseous compounds, contributing to the acid rain; In the upper atmosphere it acts as UV shield, Will burn if ignited, releasing carbon oxides, water vapors and soot, Excess paper is harmful for environment, unless composted first, Wax, both solid and molten, floats on water bodies and may inhibit the cellular breathing of many organisms, Mixed with a flammable solvent and incinerated, Gives off carbon oxides, water vapors, aldehydes, Low toxicity to aquatic life; Classified as biodegradable, Oxidation with Fenton's reagent; Mixed with a flammable solvent and incinerated; Reduction with powdered iron, Gives off carbon oxides, water vapors, soot, Displays relative low toxicity to aquatic life; PETN undergoes safe biodegradation, Flammable, releases carbon oxides, water vapor when burned in air, Bicarbonates, carbonates, bases, oxides; neutralized solution can be safely poured down the drain; valeric salts can also be pyrolyzed in a kiln, Flammable (high concentrations, >86 C), no dangerous combustion products, though the smoke will have a rancid smell, Dangerous for wildlife and aquatic life in large concentrations, Dilution in water, followed by neutralization with a base; iron oxide can be added to decompose hydrogen peroxide; can be poured down the drain afterwards, May explode at high temperatures, at high concentrations, Toxic and corrosive to wildlife, both animals and plants, Neutralization with potassium, calcium bases, followed by reduction with metallic iron under UV light in the absence of air, Leads to decomposition, resulting in manganese dioxide slag, The resulting manganese dioxide from the decomposition can be toxic if ingested by animals, Strong oxidizer, it is dangerous and toxic to small organisms, Oxidation with Fenton's reagent or piranha solution, followed by neutralization and poured down the drain, Gives off carbon oxides, water vapors, soot, VOCs, PAHs, nitrogen, Dangerous to environment, very toxic to aquatic life, Flammable if preheated, gives off carbon dioxide, soot and water vapors, Gives off carbon oxides, water vapors, soot and VOCs, Dilute it with plenty of water before release, Dangerous to environment in large amounts, Not always required, may be strongly diluted and poured down the drain, Breaks down to carbon oxides, water vapors, soot; may give off aromatic vapors, Low toxicity, may occur naturally in small amounts, Oxidation with Fenton's reagent; Incineration, best done with an afterburner, Flammable, burns in air to release carbon oxides, water vapors, soot, VOCs, Toxic to wildlife and very dangerous to aquatic life, as well as soil. Oxidizing mixtures, such as aqua regia, piranha solution or the nitrating mixture must also never be poured down the drain, as they're much more dangerous than simple acids, and can wreak havoc on your plumbing. WebDispose of it by rinsing with water, dissolving in excess dilute sulfuric acid and washing the resulting zinc sulfate solution down the sink. It's best however, to avoid dumping large quantities of waste, as the reaction in exothermic and may splash or volatilize some of the waste, so it's best to perform the neutralization in small steps. Immediate steps should be taken to limit its spread to the environment. Contact with eyes or skin causes irritation. WebUse a licensed professional waste disposal service to dispose of this product. & indicates that no RQ is assigned to this generic or broad class, although the class is a CERCLA hazardous substance. WebExamples of chemicals acceptable for disposal as regular trash are listed below. Sweep up and shovel. WebPackage lots. The primary hazard is the threat posed to the environment. Sodium hydroxide in cooled water/crushed ice or alcohol solution, Burns at high temperatures giving off carbon dioxide, water vapors, soot and hydrogen chloride fumes, Very toxic and corrosive for wildlife and aquatic life; lachrymator agent, Flammable, gives off carbon dioxide, soot and water vapors, Harmful for wildlife and aquatic life in large concentrations, Sodium hydroxide in water or alcohol solution, Sodium hydroxide in water or alcohol solution; neutralization of cyanide with bleach, Burns at high temperatures giving off carbon dioxide, water vapors, soot and hydrogen cyanide fumes, Breaks down releasing carbon dioxide, water vapors, soot, PAHs, Neutralization with an acid; mixed with a flammable solvent, followed by an incineration, Burns in air to release carbon dioxide, water vapor and nitrogen, Dangerous to aquatic life, albeit recognized as biodegradable, Copper kills aquatic life and plant roots, Reduced to bismuth metal; neutralized with a base then taken to disposal centers or recovered, Hydrolyzes and releases HCl fumes in open air, Hazardous for the environment in large quantities, Will oxidize anything (yes, platinum too) when molten, May become hazardous for the environment in large quantities, Copper and sodium ions pose toxicity to plants and animals, Will burn to release a thick cloud of carbon dioxide and sulfur dioxide in open air; will detonate in a sealed container, Its components are already used as fertilizers and the environmental effect are similar, Careful hydrolysis in cold water, outside, Burns, releasing boric acid, boron nitride and nitrogen, Boric acid resulted from hydrolysis is harmful to the fauna, Careful neutralization by adding it in ice cold water, floowed by neutralization with a base, Boron compounds tend to be harmful for wildlife, Not useful; may volatilize at high temperatures, Recycling; Traces of brass waste can be completely dissolved with nitric acid, followed by neutralization of leftover acid, recovering copper and zinc via electrowinning, Old brass may contain lead or nickel which is harmful to the environment, Neutralization with excess sodium hydroxide to sodium glycolate, Evaporates and burns at high temperatures, releasing toxic fumes, Oxidized with a strong oxidizing solution, such as chromic acid, Fenton's reagent, piranha solution, followed by neutralization and then poured down the drain, Decomposes giving off carbon dioxide, water vapors, sulfur oxides, bromine, soot, May be harmful to water bodies; environmental effects unknown, Destruction with aqueous sodium hydroxide, which can be aided by methanol or acetone; Oxidation with, Evaporates, should not be attempted indoors, Dangerous to aquatic life at high concentrations, occurs naturally; May cause ozone depletion, Reducing with a reducing agent, such as sodium metabisulfite, sulfite, bisulfite, thiosulfate, Bromous acid and its decomp. However, as the carbonate is formed, it will creep out of the flask, covering it. Since it's magnetic, a magnet can be used to scoop all steel leftovers, Some steel alloys contain nickel which will leak in the environment which is harmful to the environment, Any acid; Not required; Can be safely dumped in trash, Breaks down to strontium oxide and carbon dioxide at high temperatures; reverts as it cools, Strontium has little effect on environment, Not required; Any soluble carbonate or sulfate, Not required; May be converted to strontium sulfate or just dumped in soil, Breaks down to strontium oxide, oxygen and nitrogen dioxide at high temperatures, Will burn grass on contact; strontium has little effect on environment, Decomposes to strontium oxide at very high temperatures, Low environmental impact, occurs naturally, Careful and controlled destruction using an oxidizing solution; bubbling chlorine in a dil. It is also used as a dietary supplement, and Web13. Contact the Office of Environmental Health at 255-4862 or the Office of Life Safety Services at 255-8200 prior to discharging any copper or zinc. Materials listed below in quantities up to about 100 g or 100 ml at a time are suitable for disposal down the drain while flushing with excess water. Chromic acid and it's derivatives can also be used to destroy hazardous chemical compounds, as it neutralizes them to carbon dioxide and water. WebPlace the mixture in a container such as a sealed plastic bag; Throw away the container in your trash at home; and Delete all personal information on the prescription label of Organic salts, such as acetates and oxalates can be pyrolyzed to carbonates and water vapors. After you diluted the acid, dissolve the base in water or, if it's insoluble, add just enough water to turn it into a suspension. 6.4 Reference to other sections For disposal see section Safe detonation; Residual perchlorates can be destroyed by adding metallic iron under UV light, in the absence of air. ALWAYS CHECK THE LOCAL LAWS BEFORE DISPOSING OF ANY REAGENT! ), May give off hydrogen sulfide in the presence of water at high temperatures, Not required; Bleach can be used if desired. For each gram of barium salt, add 15 mL of 10% sodium sulfate solution. Many of these compounds catalyze organic reactions. Releasing hazardous chemicals in the environment is a crime in all jurisdictions and carries heavy fines or even jail time. Generally, the soil option is safer, because there is no plumbing you should worry about, but some chemicals shouldn't be released into the soil, either. Nitrogen or nitrogen oxides. Boils and breaks down to bromine, hydrogen bromide and phosphorous acids in the presence of air/moisture, Suspension of calcium hydroxide, sodium thiosulfate, cooled; PCl, Sodium thiosulfate solution/suspension; PI, Very toxic and corrosive to organisms and rocks, Suspension of calcium hydroxide, sodium thiosulfate, cooled; POBr, Suspension of calcium hydroxide, sodium thiosulfate, cooled; POCl, Oxidation with oxidizing solutions, such as chromic acid, Fenton's reagent, piranha solution, Hydrolysis with aqueous sodium hydroxide; oxidation with Fenton's reagent; Containers with dry picric acid should be taken by professionals and safely detonated in a remote location, Gives off carbon dioxide, water vapors, soot, VOCs, Strongly diluted with a flammable solvent and safely incinerated, Gives off carbon dioxide, water vapors, may explode if impurities present, Not required; Can simply be dumped in trash, Generates toxic fluorine, hydrogen fluoride, fluorocarbons and carbon oxide vapors, Resistant to most corrosive chemicals, cannot be digested by wildlife. Safe, biodegradable; Occurs naturally in various plants, like eucalyptus, peppermint, etc. WebIf Zinc is spilled, take the following steps: f Evacuate personnel and secure and control entrance to the area. A good rule of thumb for transition metals is to convert solutions of their ions to the insoluble carbonate or oxide, often one of the most stable and nontoxic forms of these elements, prior to disposal. The soluble salts of halogen acids and oxoacids (except perchloric and chloric acids) can be safely poured down the drain. SDS (Sodium Dodecyl Sulfate) (up to 1-25% concentration) Sodium carbonate/Sodium hydrogen carbonate. While this can sometimes be time consuming, it can often be more environmentally and economically friendly than discarding the waste in one manner or another is. Heavy metal salts or solutions can be mixed with cement, and trapped by making a concrete block. Another simple solution is to reduce the ions back to the metal. Processing, use or contamination of this product may change the waste management options. best as aqueous solution. These you can pour down in your garden. WebAmount-of-substance concentration 0.0995 - 0.1005 mol/L. Waste containing cyanide, either from gold refining or from organic extractions of alkaloids from cyanide containing plants, must be neutralized with bleach or hydrogen peroxide, to turn them into less harmful cyanates. It's not recommended to use zinc compounds obtained from technical sources as zinc supplements for soil or livestock, as it may contain traces of heavy metals, such as cadmium. Zinc Sulfate 0 01M (ZN3001-G) DRUG FACTS Active Ingredient Pyrithione Zinc 1% Purpose Anti-Dandruff Uses Helps to Treat Flakes, Itch, Irritation, Oilness Or Dryness Examples of these are sulfide, sulfate, chloride, chlorate, nitrate, nitrite, thiocyanate.[1]. Nickel-containing compounds, especially organonickel compounds, are carcinogens, and are also dangerous to many other forms of life. cooking salt) activates the etch by diminishing the bond with water. The resulting block can also be covered in another layer of cement, to reduce the diffusion of the heavy metals. However there are many chemicals, such as heavy metal compounds or organic solvents, that require special disposal techniques. Slow decomposition in a large volume of water or alcohol, Decomposes to release acetic acid, hydrogen, Harmful, will increase the boron concentration in soil or water, Melts; Decomposes releasing carbon dioxide and water vapor at high temperatures, Safe, nourishment for organisms, though harmful for bacteria, Recycling; Traces of stainless steel waste don't require chemical neutralization as SS is sufficiently inert that it can't do any significant damage to the environment. Products containing zinc sulfate can be granular, pelleted, tableted, wettable powders, or dusts. Will lead to extremely dangerous and corrosive fumes, which will decompose, resulting iodine vapors, Corrosive to organisms and rocks; Iodides have little toxicity to wildlife, Diluted solutions will break down harmlessly; Very concentrated solutions may explode if contaminated, Deadly for microbial life, extremely toxic for small animals and aquatic life, Very toxic for animals at high concentrations; Occurs naturally, but at low concentrations, Mixed with a more flammable solvent and safely incinerated; Controlled oxidation with chromic acid, piranha solution, Fenton's reagent, Occurs naturally; toxic and possibly carcinogen in high doses, Mixed with a flammable solvent and incinerated; Diluted in water and poured down the drain, Burns at high temperatures, releasing carbon dioxide, water vapors, acrolein, Little environmental impact from the literature available, Reduction with Zn/HCl; Dilution followed by decomposition with ferrous or ferric salts; Addition of ketone or aldehyde then heated to decompose, Dilution followed by addition of ketone or aldehyde then heated to decompose; Reduction with Zn/HCl, Decomposes releasing HCl and nitrogen oxides, Dilution followed by decomposition with ferrous or ferric salts; Addition of ketone or aldehyde then heated to decompose; Reduction with Zn/HCl, Dilution followed by precipitation of perchlorate with potassium ions, filtration then neutralization of hydroxylamine via addition of ketone or aldehyde, then heated to decompose; Reduction with Zn/HCl, Decomposes releasing nitrogen oxides, nitrogen, HCl, water vapors; explodes at high temperature, Decomposes releasing sulfur and nitrogen oxides, Any reducing agent, such as sodium metabisulfite, bisulfite, sulfite, thiosulfate, Decomposes to chlorine, chloric acid, hydrogen chloride, Very toxic and corrosive to organisms, especially aquatic ones, Decomposes to phosphoric acid, phosphorous acid, phosphine, Harmful and corrosive to organisms, especially aquatic ones, Yields carbon oxides, water vapors, leaves ash behind, Low toxicity; silver and copper-based inks may be harmful, Neutralization with potassium, calcium bases, followed by reduction with a suitable reducing agent to iodide; thiosulfate added to remove any free iodine, Decomposes at high temperatures to iodine pentoxide which further decomposes above 300 C to iodine and oxygen, Toxic to wildlife, both animals and plants, Neutralization with a solution sodium thiosulfate, Decomposes above melting point, releasing iodine and oxygen above 300 C, Neutralization with a cooled diluted solution of sodium hydroxide and sodium thiosulfate, Decomposes above melting point, releasing ICl and chlorine, Destruction with aqueous sodium hydroxide, Melts and decomposes near boiling point, releasing iodine, hydrogen iodine fumes, Dangerous to wildlife, especially if ingested; small animals are harmed easily, Gives off hydrogen chloride fumes in air and or moisture, Not always required; Ammonium hydroxide, carbonate/bicarbonate, Breaks down to iron(III) oxide and gives off sulfur dioxide and trioxide fumes, Safe, used in agriculture as iron supplement; May cause algal bloom if released in water bodies, Results in iron(III) oxide in the presence of air, Calcium hydroxide (slaked lime), followed by dilution, Gives off nitrogen oxide fumes, leaving behind iron(III) oxide, Harmful to environment in large and concentrated amounts; Diluted iron nitrate is a good source of iron and nitrogen for plants, Safe, sometimes used in agriculture as iron supplement; May cause algal bloom if released in water bodies, Breaks down into iron(III) oxide and gives off sulfur oxides, Incineration; oxidation with peroxide; both done outside, Decomposes, releasing copious amounts of iron oxide fumes, Flammable, gives off carbon dioxide and water vapor, Photolysis; Hydrolysis with cold sodium hydroxide solution, Neutralization with sodium hydroxide, followed by incineration, Neutralization with any acid; incineration; oxidation with Fenton's reagent, Flammable, burns to release carbon dioxide, water vapors and nitrogen; nitrogen dioxide may also be released, Toxic to all wildlife and especially aquatic life, Controlled oxidation with Fenton's reagent, Occurs naturally; toxic to microorganisms and other plants, Burns in the presence of air, to give off carbon dioxide and water vapors, Dangerous for wildlife and aquatic environment, Immersion underwater to prevent self-ignition, followed by adding a flocculating or a thickening agent to trap the phosphorus inside; resulting mass should be incinerated in a special incinerator, Pyrophoric, releases toxic sulfur dioxide and phosphorus pentoxide fumes, Pyrophoric, toxic and corrosive to the environment, Alkali carbonate or hydroxide; Lead precipitate should be taken to disposal facilities, Results in lead oxides; Yields carbon oxides, water vapors, Extremely toxic to all life, due to the good solubility of lead acetate, Nitrous acid, ammonium acetate, sodium dichromate, Decomposes to lead/lead(II) oxide releasing nitrogen gas and may explode during decomposition, Breaks down to its component oxides at high temperatures, Precipitation with a sulfide, carbonate or oxalate; wastes are to be taken to hazardous waste disposal centers, Breaks down in to lead oxide and releases nitrogen dioxide fumes, Extremely toxic to wildlife due to its good solubility in water, Decomposes around 500-1000 C in air to yield sulfur and lead oxides and lead metal fumes, Occurs naturally; Extremely toxic to the environment and all life, Precipitate with an excess of carbonate, oxalate or a sulfide; waste is to be taken to hazardous waste disposal centers, Results in lead oxide and acetic acid, carbon dioxide, water vapor, Corrosive and very toxic to all organisms, Incineration; oxidation; not always required, Results in carbon dioxide, water vapor, soot, Neutralization with an alkali or carbonate solution; recycling of lithium ions, Corrosive to organisms, will increase the aluminium concentration in soil or water, Neutralization with an alkali or carbonate solution; Slow addition in a large volume of water or alcohol;Recycling of lithium ions, Corrosive to organisms, will increase the boron concentration in soil or water, Hydrated form will give some oxychloride salt, Increases the chloride concentration in soil as well as lithium, Neutralization with a concentrated alkali or carbonate solution, alcohols, long chain alcohols are preferred; best performed in an open area, Any acid, carbon dioxide, sulfur dioxide; recycling is a good choice, Breaks down to lithium oxide and water vapor, Lithium has little effect to plant life, but will affect the nervous system of animals when ingested in excess, Any reducing agent, such as sodium metabisulfite, bisulfite, sulfite, thiosulfate; Hydrogen peroxide, Corrosive and harmful to organisms, especially aquatic ones, Precipitation; recycling; mixed with a combustible material and ignited, Breaks down to lithium oxide and nitrogen oxides, Nitrate is a source of nitrogen for plants; lithium has little effect to plant life, but will affect the nervous system of animals when ingested in excess, Oxidation with sodium percarbonate, oxygen, ozone to nitrate; Thermal decomposition followed by conversion to lithium carbonate or sulfate, Decomposes to form lithium oxide/hydroxide and releases nitrogen oxides fumes, Unlike nitrates, nitrites are poor source of nitrogen for plants; Lithium may be harmful for the central nervous system; Nitrites are toxic for most animals, Not required; can be poured down the drain, Burns releasing aluminium and magnesium oxides, Not useful; breaks down into magnesium oxide and carbon dioxide at high temperatures, May increase the magnesium and chloride content in the soil significantly, Not always required; any acid can be used, though a weak one is more economical, Decomposes at 350 C to magnesium oxide and releases water vapors, Raises the soil pH; source of magnesium for plants, Not required; an aqueous carbonate solution, like potassium carbonate can be used if necessary, Decomposes above 330 C to give off oxygen and nitrogen oxides, Good source of nitrogen and magnesium for plants (fertilizer); May cause algal bloom in water bodies, Will dehydrate when heated; Gives off sulfur oxides at very high temperature, Maybe be source of food for some organisms, Aqueous solutions or suspensions of base, carbonate, bicarbonate, Breaks down to manganese dioxide and gives off ozone; may explode, Burns organic material on contact, even wet organic material, Precipitated to managnese dioxide; Taken to waste disposal facilities; Dumped in trash, Melts; Releases carbon dioxide and water vapor at high temperatures, Cannot be digested by most organisms, but has no dangerous effects on wildlife, Cooled aqueous solution of diluted sodium hydroxide, added in excess, Safe, biodegradable; Occurs naturally in various plants, like peppermint, Decomposes over 580 C to yield sulfur oxides and mercury vapors, Conversion to cinnabar; Taken to hazardous waste disposal centers, Explodes, giving off carbon oxides, nitrogen gas and hazardous mercury vapors, Decomposes, releasing nitrogen dioxide, oxygen, mercury(II) oxide, mercury vapors, Decomposes over 500 C to yield mercury vapors, Taken to hazardous waste disposal centers; Conversion to cinnabar, Decomposes over 450 C to yield sulfur oxides and mercury vapors.
Ethical Dilemmas In Counseling Vignettes, Articles H